Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 64: e21210030, 2021. graf
Article in English | LILACS | ID: biblio-1339317

ABSTRACT

Abstract Nowadays, a prompt and reliable diagnosis is one of the most critical measures for leprosy control. The current diagnostic is based on clinical exams by a health care professional, and it may not recognize early signs of the disease. Therefore, other leprosy diagnosis methods are needed that are sensitive, disease-specific, and easy to deliver to the end-user. This study describes the construction of an electrochemical DNA biosensor to detect PCR products of Mycobacterium leprae using methylene blue as an indicator of the hybridization. The capture probe was immobilized on the graphite electrode modified with poly(4-aminophenol). The electrode surface was morphologically characterized by atomic force microscopy. Linear voltammetry was used to monitor the concentration of methylene blue on the DNA biosensor, which indicated a limit detection of 1 x 10-10 mol/L. The biosensor showed selective when placed to hybridize with a non-complementary sequence. This study suggests that the electrochemical DNA biosensor developed is promising for detecting DNA of Mycobacterium leprae.


Subject(s)
Biosensing Techniques , Aminophenols , Methylene Blue , Mycobacterium leprae
2.
Braz. arch. biol. technol ; 54(6): 1217-1222, Nov.-Dec. 2011. ilus, tab
Article in English | LILACS | ID: lil-608444

ABSTRACT

The properties of poly(4-aminophenol) modified graphite electrode as material for the immobilization of acetylcholinesterase were investigated by the Cyclic Voltammetry, Electrochemical Impedance Spectroscopy and Atomic Force Microscopy. The polymer was deposited on graphite electrode surface by the oxidation of 4-aminophenol and then acetylcholinesterase was immobilized on the surface of the electrode. The biosensor coupled in the continuous flow system was employed for the detection of dichlorvos. The detection and quantification limits were 0.8 and 2.4 μmol L-1 dichlorvos, respectively. Graphite electrodes modified with the poly(4-aminophenol) showed to be an efficient and promising material for immobilization of acetylcholinesterase enzyme. The proposed method requires simple parts which are easy to build, involves only one biosensor and the potentiometric detection is simple.

SELECTION OF CITATIONS
SEARCH DETAIL